A reduction method for noncommutative Lp-spaces and applications
نویسندگان
چکیده
We consider the reduction of problems on general noncommutative Lp-spaces to the corresponding ones on those associated with finite von Neumann algebras. The main tool is an unpublished result of the first-named author which approximates any noncommutative Lpspace by tracial ones. We show that under some natural conditions a map between two von Neumann algebras extends to their crossed products by a locally compact abelian group or to their noncommutative Lp-spaces. We present applications of these results to the theory of noncommutative martingale inequalities by reducing most recent general noncommutative martingale/ergodic inequalities to those in the tracial case.
منابع مشابه
Operator space embedding of Lq into Lp
The idea of replacing functions by linear operators, the process of quantization, goes back to the foundations of quantum mechanics and has a great impact in mathematics. This applies for instance to representation theory, operator algebra, noncommutative geometry, quantum and free probability or operator space theory. The quantization of measure theory leads to the theory of Lp spaces defined ...
متن کاملTotally probabilistic Lp spaces
In this paper, we introduce the notion of probabilistic valued measures as a generalization of non-negative measures and construct the corresponding Lp spaces, for distributions p > "0. It is alsoshown that if the distribution p satises p "1 then, as in the classical case, these spaces are completeprobabilistic normed spaces.
متن کاملNoncommutative Burkholder/Rosenthal inequalities II: applications
We show norm estimates for the sum of independent random variables in noncommutative Lp-spaces for 1 < p <∞ following our previous work. These estimates generalize the classical Rosenthal inequality in the commutative case. Among applications, we derive an equivalence for the p-norm of the singular values of a random matrix with independent entries, and characterize those symmetric subspaces an...
متن کاملNoncommutative L Structure Encodes Exactly Jordan Structure
We prove that for all 1 ≤ p ≤ ∞, p 6= 2, the Lp spaces associated to two von Neumann algebrasM, N are isometrically isomorphic if and only if M and N are Jordan *-isomorphic. This follows from a noncommutative Lp Banach-Stone theorem: a specific decomposition for surjective isometries of noncommutative Lp spaces.
متن کاملA Transference Method in Quantum Probability
The notion of independent random variables is central in probability theory and has many applications in analysis. Independence is also a fundamental concept in quantum probability, where it can occur in many different forms. In terms of norm estimates for sums of independent variables, free probability often plays the role of the best of all worlds. This is particularly true for applications i...
متن کامل